KEEP YOUR COOL

PREVENTING HEAT STRESS IN THE WORKPLACE

Don Kennedy, MPH, JD, CIH, CRM June 22, 2017

Presentation Outline:

- 1. Body's Response to Heat
- 2. Risk Factors
- 3. Signs, Symptoms, Prevention, and Treatment
- 4. Body Heat Balance Equation
- 5. Measuring Heat Stress
- 6. Heat-Related OSHA Standards
- 7. Recommended Heat Stress Exposure Limits
- 8. Heat Stress Prevention Program Elements
- 9. Case Studies Occupational Safety and Health Review Commission

10. Review

Body's Response to Heat

Coping with Heat

How does the body cope with heat? - The body tries to maintain a constant internal temperature of 98.6°F When the internal temperature rises, the body attempts to get rid of excess heat by: Increasing blood flow to skin surface - Releasing sweat onto skin surface

Effects of Body's Response Reduced blood flow to brain Reduced mental alertness and comprehension Reduced blood flow to active muscles - Fatigue, loss of strength Increased sweating - Slipperiness

When Cooling Mechanisms Fail

 High air temperature reduces effectiveness of the cooling system

 High humidity reduces evaporation rate of sweat

Excess loss of sodium

Dehydration

Risk Factors

Environmental Factors

Temperature

Relative humidity

Radiant heat

Air velocity

8

Individual Factors Individual variability Acclimatization Age Overweight / body fat Drugs Caffeine History of heat-related illness

Work-related Factors

Workload

- -Type of work
- Level of physical activity
- Time spent working
- Clothing
 - Weight (heavy vs. breathable)
 - Color (dark vs. light)
 - PPE and protective gear / clothing

Work-related Clothing and PPE
Protective gear – police and emergency responders
PPE and clothing adjustment factors

Level A suit without microclimate cooling: 50°F

Guide for the Selection of Personal Protective Equipment for Emergency First Responders, 2nd Edition, DHS Security Guide 102-06 January 2007

Signs, Symptoms, Prevention, and Treatment

Heat Rash

Cause	Signs/ Symptoms	Treatment	Prevention		
• Hot humid	• Red	• Change into	• Wash		
environment	bumpy rash	dry clothes	frequently		
and plugged	with severe	• Avoid hot	to keep skin		
sweat glands	itching	environments	clean and		
		• Rinse skin	dry		
		with cool			
		water			

Sunburn

	Cause	Signs/ Symptoms	Treatment	Prevention
	• Over-	• Red, painful,	• For skin	• Work in the
_	exposure to	or blistering	blisters, seek	shade: cover
	the sun	and peeling	medical aid	skin with
		skin	• Use skin	clothing; use
			lotions (avoid	suntan
			topical	lotions with
			anesthetics)	a sun
			and work in the	protection
			shade	factor of at
				least 15

Heat Cramps

Cause	Signs/ Symptoms	Treatment	Prevention
• Muscle spasms that result from	• Painful cramps in arms,	• Move to a cool area; loosen	• Drink water and / or
lack of water replenishment	legs, or stomach which may occur suddenly at work or later at home	clothing and drink cool salted water (1 tsp. salt per gallon of water) or commercial fluid replacement	carbohydrate- electrolyte liquids
		 beverage If severe or if they don't go away, seek medical aid 	15

Heat Syncope

Cat	ise	Signs/ Symptoms	Treatment	Prevention
• Not eno	ugh	• Sudden fainting	• Fainting may be due to	• Reduce activity
blood flow	ving to	after at least two	a heart attack or other	levels and/or heat
the head,	causing	hours of work	illness	exposure
loss of		 Cool moist skin 	• GET MEDICAL	• Drink fluids
conscious	ness	• Weak pulse	ATTENTION	regularly
			• Assess need for CPR	• Gradual
	A		• Move to a cool area	acclimatization of
			 Loosen clothing 	workers
			• Make person lie down	• Workers should
			• If conscious, offer sips	check on each
	6		of cool water	other to help spot
				the symptoms
				which often
				precede heat
				stroke

Heat Exhaustion

Cause	Signs/ Symptoms	Treatment	Prevention
• Inadequate salt	 Heavy sweating 	• GET MEDICAL	• Reduce activity
and water intake	• Cool moist skin	AID	levels and/or heat
causes a person's	• Body temperature	• This condition can	exposure
body's cooling	over 100.4°F	lead to heat stroke	• Drink fluids
system to start to	• Weak pulse	• Move the person	regularly
break down	 Normal or low 	to a cool shaded	• Workers should
	blood pressure	area	check on each
	• Person is tired,	• Loosen or remove	other to help spot
	weak, clumsy, upset	excess clothing	the symptoms
	or confused	• Provide cool water	which often
	• Person is very	to drink (salted if	precede heat
	thirsty	possible)	stroke
	• Panting or	• Fan and spray	
	breathing rapidly	with cool water	
	• Vision may be		
	blurred		1

Heat Stroke

Cause Signs/ Symptoms		Treatment	Prevention		
• If a person's body has used up all its water and salt, it will stop sweating, which can cause body temperature to rise	 High body temperature (over 105.8°F) and any one of the following: weakness weakness the person is confused, upset or acting strangely hot, dry, red skin a fast pulse headache or dizziness In later stages, a person may pass out and have convulsions 	 CALL AMBULANCE This condition can be fatal Remove excess clothing Fan and spray the person with cool water Offer sips of cool water if the person is conscious Do NOT send home or leave unattended unless approved by a physician 	 Reduce activity levels and/or heat exposure Drink fluids regularly Workers should check on each other to help spot the symptoms which often precede heat stroke 		

Body Heat Balance Equation $S = (M - W) \pm C \pm R \pm K - E - Res$

S = the change in heat content of the body
M = heat produced by metabolism
W = rate of mechanical work accomplished
C = net heat exchange by convection
R = net heat exchange by radiation
K = net heat exchange involving direct transfer
E = body heat loss by evaporation
Res = rate of heat exchange by respiration

How to Modify Environmental and Metabolic Heat Factors

Environmental heat load (C, R, and E) can be modified by

 Engineering controls (e.g., ventilation, air conditioning, screening, insulation, and modification of processes or operations) and

Protective clothing and equipment

 Metabolic heat production (M) can be modified by

Adjusting work load (W) and

- Using labor-reducing devices

Measuring Heat Stress

NOAA NWS Meteorological Measurements

Temperature

 Three thermometers
 5-minute averages using two-second readings from each thermometer

 Relative humidity

 A single relative humidity sensor
 5-minute averages

Wet Bulb Globe Temperature (WBGT) Devices

WET BULB (WB) THERMOMETER

- WB is measured with a thermometer that has a wet wick, which takes into account RH and wind speed (evaporative cooling)

GLOBE (G) THERMOMETER

- G indicates radiant heat exposure

 A temperature sensor is placed inside a blackened copper sphere

DRY BULB (DB) THERMOMETER
 DB is the ambient air temperature

– DB is the ambient air temperature

Personal Monitors

HS Index devices [Temp and RH]
Body temperature
Ear sensor
Skin sensor

 Note: OSHA does not view ear canal or skin sensors as sufficiently reliable to use in compliance evaluations. OSHA Heat Safety Phone App
Uses NOAA NWS data
Allows workers and supervisors to calculate the OSHA heat index for their worksite
Displays a risk level for outdoor work

OSHA Heat Safety Phone App

https://www.osha.gov/SLTC/heatillness/heat_index/heat_app.html

NOAA NWS Tulsa WBGT

- Wet Bulb Globe Temperature (WBGT) takes into account:
 - temperature
 - humidity
 - wind speed
 - sun angle
 - cloud cover (solar radiation)

Note: The WBGT differs from the OSHA heat index [OSHA HI takes into consideration T & RH and is calculated for shady areas].

 Military services, agencies, many nations, and a few states use the WBGT as a guide to managing workload in hot environments

NWS WBGT Prototype

http://www.weather.gov/tsa/wbgt

Heat-Related OSHA Standards

General Duty Clause

 OSHA does not have a specific standard that covers working in hot environments

 General Duty Clause, Section 5(a)(1): in addition to compliance with hazard-specific standards, all employers must provide a work environment "free from recognized hazards that are causing or are likely to cause death or serious physical harm" to employees. 29 U.S.C. § 654(a)(1)

GDC Elements

- OSHA will cite an employer under the General Duty Clause for heat-related hazards
- To prove a violation of the general duty clause, OSHA must establish that:
 - (1) a condition or activity in the workplace presented a hazard;
 - (2) the employer or its industry recognized the hazard;(3) the hazard was likely to cause death or serious physical harm; and
 - (4) a feasible and effective means existed to eliminate or materially reduce the hazard
- OSHA must also establish that the employer knew, or with the exercise of reasonable diligence could have known, of the hazardous condition

Heat Exposure Citations

- OSHA has issued GDC citations for heat exposures in the following industries:
 - Landscaping
 - Roofing
 - Farming
 - Construction/paving
 - Tree cutting
 - Garbage collection
- 20 Citations issued 2012–2013

Related Standards

Personal Protective Equipment (29 CFR 1910.132)
Sanitation (29 CFR 1910.141)

Requires employers to provide potable water

Medical Services and First Aid (29 CFR 1910.151)

Requires onsite personnel to be adequately

trained if medical facilities are not close by
 Recordkeeping (29 CFR 1904.7(b)(5))

Recommended Heat Stress Exposure Limits

Exposure Limits

NOAA's National Weather Service Heat Index
OSHA's Modified NWS Heat Index
ACGIH TLVs for Chemical Substances and Physical Agents (Thermal Stress) Heat Stress and Heat Strain

NOAA's National Weather Service Heat Index

NOAA's National Weather Service

Heat Index

Temperature (°F)

		80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
	40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
_	45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
(%)	50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
	55	81	84	86	89	93	97	101	106	112	117	124	130	137			
Humidity	60	82	84	88	91	95	100	105	110	116	123	129	137				
Щ	65	82	85	89	93	98	103	108	114	121	128	136					
	70	83	86	90	95	100	105	112	119	126	134						
Relative	75	84	88	92	97	103	109	116	124	132		•					
lati	80	84	89	94	100	106	113	121	129								
Re	85	85	90	96	102	110	117	126	135								
	90	86	91	98	105	113	122	131									
	95	86	93	100	108	117	127										
	100	87	95	103	112	121	132										
	Likelihood of Heat Disorders with Prolonged Exposure or Strenuous Activity																

Extreme Caution

Danger

Extreme Danger

34

OSHA Guidance for Heat Stress

- Based on a modification of NOAA's National Weather Service (NWS) Heat Index System
 - NOAA's system relates a given heat index to a "caution level"
 - The NOAA NWS heat index is calculated from two numbers: the air temperature and the relative humidity
 - OSHA points out that NOAA devised the heat index values for shaded conditions and light winds

OSHA Caution Labels

-	Heat Index	Risk Level	Protective Measures
_	Less than 91°F	Lower (Caution)	Basic heat safety and planning
	91°F to 103°F	Moderate	Implement precautions and heighten awareness
<	103°F to 115°F	HIGN	Additional precautions to protect workers
	Greater than 115°F	Very High to Extreme	Triggers even more aggressive protective measures

OSHA Explanation of Caution Labels

- OSHA does not provide an explanation as to how it modified the NOAA NWS heat index or how to adjust the heat index based upon the amount of sunshine or level of work.
- Here is what OSHA does say -
 - "Full sunshine can increase heat index values by up to 15° Fahrenheit. Strenuous work and the use of heavy or specialized protective clothing also have an additive effect. As a result, the risk at a specific heat index could be higher than that listed in the [table] if the work is in direct sunlight without a light breeze, or if work involves strenuous tasks or the use of heavy or specialized protective clothing. Extra measures, including implementing precautions at the next risk level, are necessary under these circumstances."

ACGIH[®] TLVs[®]

 Assumes that nearly all acclimatized, fully clothed workers with adequate water and salt intake can work without exceeding a deep body temperature of 100.4°F

 Measurement of deep body temperature is impractical for monitoring the workers' heat load

WBGT is the simplest and most suitable technique to measure the environmental factors

TLV WBGT Values

Allocation of Work in a	TLV [WBGT values in °F]				Action Limit [WBGT values in °F]			
Cycle of Work and Recovery	Light	Moderate	Heavy	Very Heavy	Light	Moderate	Heavy	Very Heavy
75 to 100%	87.8	82.4	-	-	82.4	77.0	-	-
50 to 75%	87.8	84.2	81.5	_	83.3	78.8	75.2	-
25 to 50%	89.6	86.0	84.2	82.4	85.1	80.6	77.9	76.1
0 to 25%	90.5	88.7	86.9	86.0	86.0	84.2	82.4	80.6

Comparison – ACGIH and OSHA

	ACGIH	OSHA
Measured in the sun		X
Measured in the shade	X	
Uses Temperature		
Uses RH		
Uses Wind		X
Uses Cloud Cover		X
Uses Sun Angle		X

Sample Data – OSHA Guidance

- The NOAA NWS HI relies on only two variables, T and RH
 - Obtain Temperature = 90°F
 - Obtain Relative Humidity = 42%
 - Use the NOAA NWS Heat Stress table, interpolate to obtain the result
 - Compare the result with OSHA Guidance

A OSHA HI of 92°F = "Moderate Risk Conditions"

Note: For light work, in clear skies, in accordance with OSHA Guidance, the heat index may be increased 0 – 15°F. For our example, the clothing adjustment factor is "0." 41

Sample Data – TLV

 Obtain the WBGT value Adjust the WBGT for work demands, clothing, wind speed, and sun exposure (1) Calculate the TLV WBGT value = $81^{\circ}F$ (2) Clothing adjustment factor is "0" (3) Job entails "light work" TLV WBGT "action level" for light work is 82.4°F - "Is 81°F less than the action level?" Yes No further action is recommended However, if the WBGT = 89° F, then, for light work, the recommended cycle of work and recovery would be between 50-75%

Sample Data Results – OSHA HI and TLV WBGT

	Temp (°F)	Dew Point (°F)	RH (%)	WBGT Sky (%)	WBGT Wind (mph)	WBGT Clo	OSHA Heat Index (°F)	TLV WBGT (°F)
_	90	65	42	65	13	0	92	81
	90	65	42	5	13	0	92	83
~	90	65	42	5	3	0	92	89

Heat Prevention Program Elements

OSHA Guidance Approach Develop your plan before heat index levels rise Train workers before it gets hot Track the weather daily to assess risk Implement heat stress plan when HI >80°F Take protective measures appropriate for the risk level

OSHA Heat Prevention Plan Elements

	Heat Index Risk Level					
Plan Element	Lower (Caution)		High	Very High/Extreme		
Supplies (ensuring adequate water, provisions for rest areas, and other supplies)	✓	✓	✓	✓		
Emergency planning and response (preparing supervisors and crews for emergencies)	✓	✓	\checkmark	✓		
Worker acclimatization (gradually increasing workloads; allowing more frequent breaks as workers adapt to the heat)	✓	✓	✓	✓		
Modified work schedules (establishing systems to enable adjustments to work schedules)		✓	✓	✓		
Training (preparing workers to recognize heat- related illness and preventive measures)	✓	✓	✓	✓		
Physiological, visual, and verbal monitoring (using direct observation and physiological monitoring to check for signs of heat-related illness)		√	✓	✓		

Elements of a Heat Stress Prevention Plan

- Designate a person to develop, implement, and manage the program
- Monitor the temperature (e.g., heat index and wet bulb globe temperature) at the worksite
- Provide water and rest breaks in a shaded, cool area
- Acclimatize workers by gradually increasing the exposure to heat or a hot environment
- Modify work schedules as necessary to reduce workers' exposure to heat
- Train workers on the signs and symptoms of heat illness
- Monitor workers for signs of heat stress
- Plan for emergencies and response

Preventing Heat-Related Illness – Employers

- Employers should establish a program that includes:
 - Training for supervisors and employees
 - Heat acclimatization
 - Proper hydration
 - Work/rest regimens
 - Access to shade or cool areas
 - Prompt medical attention to workers who show signs of heat-related illness
 - Monitoring weather reports
 - Scheduling jobs to cooler parts of the day

Preventing Heat-Related Illness – Employees

- Workers should do the following:
 - Drink water and other liquids
 - Eat during lunch and breaks
 - Wear light colored, loose-fitting, breathable clothing (e.g., cotton)
 - Wear wide-brimmed hats
 - Take breaks in shade or cool area
 - Monitor your condition and that of co-workers
 - Tell supervisor if you have symptoms
 - Talk with your doctor about medications

Case Studies

OSHRC – Duriron Case Since 1983, the OSHRC has upheld GDC citations as the result of exposure to heat-related hazards. (OSHRC Docket No. 77-2847 Sec'y of Labor v. Duriron Co. dated 4/27/1983)

OSHRC – Duriron (cont'd)

- Duriron manufactured iron and steel castings
- Ave temp 95°F; hourly ave 92°F 99°F; peak of 115°F
- Exceeded WBGT limits recommended by NIOSH, OSHA, and ACGIH TLVs
- Employee "passed out"
- Initially vacated by the ALJ "unlikely that employee would fall into molten metal."
- OSHRC reversed \$200

OSHRC – USPS Case

 OSHRC determined that the Secretary had established a prima facie violation of the Act (OSHRC Docket No. 13-0217 Sec'y of Labor v. USPS dated 9/24/2014)

OSHRC – USPS Case (cont'd) 55 yr. old male, 27 yrs. exp., RTW after a 5 week absence 7/23/2012, KS, Missouri, NWS issued heat warning ∽ 7/23/2012: 104°F, 24% RH, HI 105°F ◆ 7/24/2012: 102°F, 28% RH, HI 104°F 7/24/2012: letter carrier dies; core temp 108.7°F Willful – \$70,000

OSHRC – Sturgill Case

In the Sturgill case, the OSHRC determined that the temperature exceeded 80°F every day, except for one, and that OSHA guidance is to implement a heat stress program "when the heat index is at or above 80°F" (OSHRC Docket No. 13-0224 Sec'y of Labor v. A.H. Sturgill Roofing, Inc. dated 2/23/2015)

OSHRC – Sturgill (cont'd)

Background

- Miamisburg, OH
- July 23 August 1, 2012
- Removing Styrofoam & rubber materials
- Materials weighed 1-10 lbs.
- Lift 39-inches to throw into dumpster below
- Weather on August 1, 2012
 - Occasional scattered clouds
 - Temp: 72 83°F
 - Some shade on roof
 - Large AC units on roof
 - Break areas on ground with shade
 - Heat Index: 85°F

OSHRC – Sturgill (cont'd)

≁ M.R.

- 60 year old male
- 10 years temporary worker
- Most recently worked the night shift in an air conditioned printing facility
- Claimed he had roofing experience
- Wore all black clothing
- Unacclimatized worker
- Pre- and post-employment tests detected no alcohol or drugs
- Core temp: 105.4°F

OSHRC – Sturgill (cont'd)

Foreman

- Showed M.R. warning lines, water coolers, break areas
- Assigned M.R. least strenuous work
- Did not train M.R. on heat-related hazards or how to recognize their signs and symptoms

OSHRC – Sturgill (cont'd) Two Citations / Violations (Serious) -GDC: \$4,410 - Training: \$4,410 Penalty Factors - Size of company - Gravity of violation - Employer's good faith Prior history of violations

OSHRC – Aldridge

Background

- Worksite: Chicago, Ill.
- Electrical subcontractor
 - Outdoor work

 Two workers, lifting, carrying, and gluing PVC pipe, ~20 lbs.

Aldridge Electric, Inc.

- Had a Heat Illness Prevention Plan that included
 - Health effects of heat
 - Acclimatization essential for new workers
 - Work / rest regimen once WBGT reached 91°F
 - Buddy rule
- Based on NIOSH, AIHA, and California
- Trained employees and supervisors

Decedent

- 36 year old male
- Had a DOT medical certificate, renewal date
 6/15/14
- Reported to work, 6/24/13 at 7:00 am; attended new hire / safety orientation from 8:00 to 9:30 am
- Coroner report heat stroke with a contributing factor obesity
- OSHA 301 log decedent "started showing signs of confusion and disorientation"
- Core temperature 108.8°F

Date	Time	Т	RH	Clouds	Wind	HI
	7:51 AM	73	76	Few	13	NA
	10:51 AM	73	71	Few	13	NA
	11:51 AM	76	64	few	9	NA
6/24/2013	12:10 PM			Lunch		
	12:51 PM	83	48	Few	15	83.5
	1:51 PM	84	49	Few	11	84.9
	2:51 PM	84	57	Scattered	13	86.7

- The judge noted (stipulated facts) that Aldridge followed OSHA's guidance by taking these steps:
 - Employees at the worksite were permitted to take as many rest breaks as they wanted
 - A tool box talk on heat illness was given to workers
 - Heat illness prevention and acclimatization of workers were topics discussed during the safety orientation
 - Aldridge had developed a heat illness prevention plan and trained its employees about heat stress
 - Aldridge obtained a pre-employment medical certificate indicating the worker was qualified to perform work in extreme temperatures

 Did the Secretary establish by the preponderance of the evidence that a hazard, as defined by the OSH Act and case law, existed in this case?

[OSHRC Docket No. 13-2119, Sec'y of Labor v.
 Aldridge Electric, dated 12/2/2016]

Review

- 1. Body's Response to Heat
- 2. Risk Factors
- 3. Signs, Symptoms, Prevention, and Treatment
- 4. Body Heat Balance Equation
- 5. Measuring Heat Stress
- 6. Heat-Related OSHA Standards
- 7. Recommended Heat Stress Exposure Limits
- 8. Heat Stress Prevention Program Elements
- 9. Case Studies Occupational Safety and Health Review Commission

Questions